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Abstract

It is common to control access to critical information basedhe need-to-know
principle; The requests for access are authorized onlyeifctntent of the requested
information is relevant to the requester’s project. We folate such a dichotomous
decision in a machine learning framework. Although the émsmisclassifying exam-
ples should be differentiated according to their imporéanice best-performing error-
minimizing classifiers do not have ways of incorporatingebst information into their
learning processes. In order to handle the cost effectiwadyapply two cost-sensitive
learning methods to the problem of the confidential accestr@cand compare their
usefulness with those of error-minimizing classifiers. \eeise a new metric for as-
signing cost to any datasets. From the comparison of thesepstitive classifiers with
error-minimizing classifiers, we find that costing demoaigts the best performance in
that it minimizes the cost for misclassifying the exampled the false positive using
a relatively small amount of training data.
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1 Introduction

Securing information from unauthorized accesses is veppmant in an information-
rich society. For example, project managers want to prdtest trade secrets from
employees in other departments as well as outsiders. Fauitpose of indexing and
security, confidential information is grouped into con@mbased on the similarity of
their contents or similar levels of confidentiality. A seewepository (e.g., a secured
database) holds all these containers encompassed byediattess system. Requests
to access the confidential information may occur, for examwhen an employee is
assigned to a new project and needs to access backgrountekigewA set of access
control lists (ACL) might be compiled manually to controbte requests. Each item
of confidential information is associated with an ACL, whixlisures a corresponding
level of security and can be accessed by anyone who has biéremiaed. However this
approach has a crucial security weakness in that a user vehuthisrized to a segment
of confidential information in a container is actually aldeatcess the entire container.
For example, an employee, who is authorized only to look abgness report on the
development of new technology, is able to access the infdiemabout a financial plan
for that project; the two pieces of information are aboutdame project and hence are
held in the same container. Therefore the supervisor of tlleation of confidential
information will either hand select only those documentd the will let the user see,
or completely bar access to the entire collection rather tiegk exposing documents
that should not be exposed.

Furthermore, this approach is inflexible. It does not all@syeadjustment to fre-
guent changes of a user’s task assignment. Project assignfoe an employee may
be changed quite often and hence the employee needs to aocdiskential informa-
tion related to the newly assigned project. In additiongasdo a previously assigned
project may need to be revoked. In order to ensure that dadtbaccess is granted and
unauthorized access is denied, the ACLs for all informadissociated with the project
must be updated according to the rights and the permissiemaployees assigned to
the project.

As a solution for these problems, we developed a multi-aggstem that han-
dles the authorization of requests for confidential infaioraas a binary classification
problem [13]. Instead of relying on coarse-grained ACLs haddpicked information,
our system compares the content of requested confiderfihiation with the con-
tent of the requester’s project and authorizes the requdgifahe two are relevant. In
the case of either acceptance or rejection, the event caogiged for security audits
and alarms. By doing this, our system allows the supervisoreans of specifying
subsets of per-user and per-task access control policiea amy to automatically en-
force them. Since the proposed system learns the supésvilgmision criteria based
on a small number of supervisor-provided examples, thersigoe need not identify
all relevant information. Through our proposed systemhéint becomes possible for
the supervisor to define, assign, and enforce a securitgypiali a particular subset of
confidential information.

Although our approach showed a relatively good performda8g we believe
there is a room for improvement. Previously we made use ofdifferent error-
minimizing classifiers for authorizing the requests to asceonfidential information.



We believe that we can improve our results by taking into eration the cost caused
by misclassification. In particular, it is undesirable t@ @ error-minimizing classi-

fication method, which treats all mis-classification cosfsadly, for this scenario be-

cause primarily it classifies every example as belongingémtost probable class. For
example, suppose that there are 100 medical records that&raly comprised of 5

cancer records and 95 cold records. Without consideringakefor misclassification

(i.e., diagnosis), an error-minimizing classifier coulthply achieve the lower error
rate by ignoring the minority class, even though the actesliit of misdiagnosis on

cancer is far worse than that of cold (e.qg., the cost will lzdlyehigh).

In this paper we would like to test the effectiveness of @astsitive learning for
the problem of confidential access control. Section 2 copgenst-sensitive classifi-
cation with error-minimizing classification in terms of tbptimal decision boundary
and details two approaches for cost-sensitive learningti®e3 describes three differ-
ent classification methods as candidates for the procesmdifiential access control.
Section 4 describes experimental settings and empiricdlation of cost-sensitive
learners. Section 5 presents related work and section émqsesonclusions and future
work, respectively.

2 Cost-Sensitive Classification

In the previous section, we mentioned briefly the reason wtgsé-sensitive classifier
is better suited for the problem of confidential access cbttian an error-minimizing
classifier. This section formalizes the principle in terrhghe optimal decision bound-
ary for a binary classification task with univariate data.

2.1 An lllustrative Example

A classification method is a decision rule to assign one aff@re than one) predefined
classes to given examples. Some of them produce a contirmupist whereas others
produce a discrete class label. The optimal decision baynsia decision criteria that
allows a classifier to produce the best performance.

Let us consider a hypothetical example in figure 1 which shiovesclasses with
overlapping boundaries due to their intrinsic randomnds®ir actual values are ran-
dom variables. In this example, the probability densitydach class is normal, that is,
p(class = 0|z) ~ N(uo, 02) andp(class = 1|z) ~ N(u1,03)L.

If the cost for misclassification is equal, where is the optilecision boundary
(ze*) for a binary classification? Assuming that we know how twakyability densities
are distributed, it is relatively easy to compute the optidezision boundary. Formally,
let P be the probability of class 1 given an example

P(z|class =1) = P(z|class =0)
P = 1-P
P = 05

Yo = 0.3500, 09 = 0.1448, 11 = 0.7000, 01 = 0.1736
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Figure 1: The optimal decision boundary for a binary clasaifon will be determined
by considering the misclassification cost.

0 0.2 1

The probability of an example belonging to class 1 is 0.5, meaning that the optimal
decision boundary lies in the center of two class distrimsi(i.e.,ze* = 0.52). There-
fore an example randomly generated will be assigned to dléfsis value is greater
than 0.52. The solid line represents this optimal decismmidary, assuming the cost
for misclassifying is equal.

Pivoting the optimal boundary, a classifier could have foasgible classification
outcomes; “a” is “true positive” that an example, belongs to “class 1" and it is
classified as “class 1.” “c” is “false negative” if is classified as “class 0.” “d” is
“true negative” ifz belongs to “class 0” and is classified as “class 0.” Finally, is
“false positive” if z is classified as positive [10]. Table 1 captures this infdromaas
well as the costX;;) involved in those four outcomes. Particularly, is the cost for
classifying an example belonging j@si.

It is reasonable to evaluate the performance of a classii@mputing the area
under the regions’ boundaries. In particular, the true &geealass 1 is the sum of “a”
and “c.” If a classifier produces results like those in table.g., “a” and “b” for “class
1" and “c” and “d” for “class 0”), then the false negative oigftlassifier is roughly
15% (i.e., percentage of “c” out of the whole area of “clasgelid the false positive is
10% (i.e., 10% of class 0), respectively.

Where then would be the optimal decision boundary if the farsiisclassifying
is unequal. Let us assume that text documents belongingass'®” and “class 1"
are confidential information of which careless release mayeha damaging effect.
An employee is newly assigned to a project for which recordsséored in a secured

| trueclass =1 trueclass =0
outputclass = 1 a (A1) b (A10)
outputclass = 0 ¢ (Mo1) d (Aoo)

Table 1: Four possible outcomes and their costs for a binasgification are presented.



repository and are labeled as “class 1.” Since the docunimitsging to “class 0”
are about different projects, the employee is supposeddesado only documents in
“class 1" for understanding background knowledge of thggmto

Assuming that no cost is assigned to the correct classiic@li;; = \go = 0), the
costs for two errors should be considered carefully for fliog a reliable confidential
access control; false negativi () — reject the valid request (e.qg., reject the request
that the employee asks to access a “class 1” document byctirgfdithe requested
document as “class 0"); false positive,() — accept the invalid request (e.g., accept
the request that the employee asks to access a “class 0” @ntioy predicting the
requested document as “class 1”). As the results from suddidhauthorizations,
a false negative causes the employee to be inconveniencaddeehe is not able to
access need-to-know information. However, not approvialidwequests does not
cause a serious problem from the security perspective. ©odhtrary, a false positive
is a serious problem because confidential information, wbklould not be revealed,
can be accessed. Therefore, for a need-to-know basis cotididauthorization, the
cost for false positive is much higher than that of false tiegaThus it is reasonable
to re-locate the decision boundary for uniform-cost (is@lid line in the figure 1),
in order to minimize the cost for misclassifications. Forrapée, if the cost of false
positive is higher than that of false negative, the deciifmshould be moved toward
to the right (i.e.,zR*). Two dashed lines in the figure 1 represent the optimal decis
boundaries for non-uniform misclassification cost assignesach example.

However a tradeoff must be considered because choosing tiieextremes (e.g.,
zL* or zR* ) will sacrifice the error that is not considered. In partauthe classifier
could reduce the false negative close to zero if we would sbaed.* as a decision
line, but with higher false positive. If either of extremesiiot the solution, the opti-
mal decision line should be chosen somewhere between exdrbynconsidering the
tradeoff:

costiP(y = 1|Z) = costaP(y = 0|%)
costiP = costy(1 — P)
cost1P = costy — costa P
t
P - costy

costy + costo

2.2 Wrappers for Cost-Sensitive Classification

In the problem of unequal misclassification cost, the exarspce is optimally divided
into |C| regions so that clagsis the optimal (i.e., least-cost) prediction in regjormhe
goal of cost-sensitive learning is to find the boundary betwibese regions. Obviously
the misclassification cost, particularly a loss matrix (¢éadple 1), is the dominant factor
for the optimal boundaries. That is, the region wheraust be predicted will expand
at the expense of the regions of other classes if misclasgifgxamples of clasg is
more expensive relative to misclassifying others, evenighahe class probabilities
remain unchanged.
There have been two major approaches for cost-sensitivaihga The first one is

a glass-box approach that modifies particular error-miiimgiclassifiers cost-sensitive



[1], [16]. The second one is a black-box approach that caseebitrary error-minimizing
classifiers into cost-sensitive ones [19], [2].

In this paper, we utilize two methods in the black-box apphofar cost-sensitive
learning: costing [19] and metacost [2]. A black-box apptofor cost-sensitive learn-
ing makes any error-minimizing learning method carry owgtesensitive learning. In
particular, they make use of sampling techniques that éh#iregoriginal example dis-
tribution D to D by incorporating into it the relative cost of each instanthen they
make any cost-insensitive error-minimizing classifiersfqren expected cost mini-
mization on the newly generated distributidh, According to a given cost matrix,
this changes the proportion of a certain class by re-sagplirthe original examples
instead of modifying the learner’s rule.

2.2.1 Costing

Costing (cost proportionate rejection sampling with aggtisn) is a wrapper for cost-
sensitive learning that trains a set of error-minimizingssifiers by a distribution,
which is the original distribution with the relative cost @ch example, and outputs
a final classifier by taking the average over all learned glass [19]. It assumes
that changing the original example distributibnto anotherD, by combining it with
the cost information, makes any error minimizing classifiecomplish expected cost
minimization on the original distribution. Costing is coriged of two processes: re-
jection sampling and bagging. Rejection sampling has beed to generate indepen-
dently and identically distributed (i.i.d.) samples thet ased as a proxy distribution
to achieve simulation from the target distribution. To thi®d, it requires a density
functiong(x) and a constanm/ > 1, satisfying the “envelope property”

m(x) < Mg(x)

Given the a density function(z) satisfying the “envelope property”, rejection sam-
pling works as follows: draw: from ¢g(z) and a sample from a uniform distribution

U,Vu € [0,1] and accept if u < A’};Z) Otherwise reject the value afand repeat
the sampling step [11]. The accepted values are regardedeadization ofr(z). In
particular, suppose we run the sampliNgtimes, and can estimajeby using theNV

accepted samples because those samples are i.i.d. saroplesf).

Rejection sampling for costing assigns each example in tiggnal distribution
with a relative cost and draws a random numbee [0, 1] from a uniform distribution
U. It will keep the example if > 7. Otherwise it discards the example and continues
sampling until a certain criteria is satisfied. The acceptenples are regarded as a re-
alization of the altered distributio), D = {5}, S5, ..., S, }. With the altered distribu-

’

tion, D, costing traing: different hypotheses,; = Learn(S;), and predicts the label
of an test exampleg, by combining those hypothesés ) = sign (Zle hi(f)).

24, = % X x;, wherec is a cost assigned to; and Z is max.c s c.



2.2.2 Meta-costing

The MetaCost is another method for converting an errorsmizing classifier into cost-
sensitive classifier by re-sampling [2]. The underlyinguasgtion is that an ordinary
classifier for error-minimization could learn the optimacision boundary based on
the cost matrix if each training example is relabeled withebst. The learning process
of MetaCost is comprised of two processes: bagging andmetggthe classifiers with
cost. In particular, it generates a set of samples with oepieent from the training
set and estimates the class of each instance by taking thagavef votes over all
the trained classifiers. Then the MetaCost re-labels eadhing example with the
estimated optimal class and re-trains the classifier todladeled training set.

R(il#) = argmin {P(j|)CG. )

where R(¢|Z) is the expected cost of predicting thatbelongs to theth class and
P(j]Z) is the Bayes optimal classification.

3 Binary Classification For Supporting Critical Deci-
sion

Our goal is to develop a reliable process for confidentiatascontrol based on the
need-to-know principle; the request for access to a unibafidential information is
accepted only if the content of the requested item is releteaiie requester’s task. It
is reasonable to verify whether or not the content of a regdesonfidential item is
associated with the content of a requester’s project bectugsrequester only needs
to know information related to his/her project in order tandact the given task. In
other words, a request for confidential that the requestes dot “need to know” is
undoubtedly rejected. To this end, we model such a dichotsrdecision (i.e., to re-
ject or accept the request) in a machine learning framewdikchoose four different
classification methods, linear discriminant analysisjdtig regression, support vec-
tor machines, and naive Bayes classifier, because of tHativeegood performance,
particularly in text classification [5], [12], [14], [9]-

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a well known method statistical pattern
recognition that projects the observed patterns into a liomedsional space in which
the classes are well separated [6]. In particular, LDA poeduan optimal linear dis-
criminant functionf (x) = W7 x which maps the input example into the classification
space in which the class identification of this sample isdiEtbased on some metric
such as Euclidean distance and Mahalanobis distance. éafyijgDA implementation

is carried out via scatter matrix analysis. We compute theiwiand between-class
scatter matrices as follows:

M
1
Sw = M;P(Ci)zi (1)



1 M
S = 7 ;(Hi — ) (i — )" )

wherep; andX; is the mean vector and covariance matrix of ttteclass,S,, is the
within-class scatter matrix showing the average sc@giof the sample vectorg

of different classC; around their respective mean, S; is the between-class scatter
matrix, representing the scatter of the conditional meanors;'s around the over-

all mean vectop. Various measures are available for quantifying the disicratory
power, the commonly used one being [6]:

TS|
JWw) =1 Pw 1l
W) = wrs,m]

whereW is the optimal discrimination projection and can be obtdivia solving the
generalized eigenvalue problem:

SyW = AS,W

The distance measure used in the matching could be a simpléd&n or Maha-
lanobis. However for our case — a binary classification wéreghdocument belongs
to the need-to-know confidential or not — Euclidean distasesed because the max-
imum rank of Sy, is |C| — 1, where|C| is the number of classes, meaning that LDA
cannot produce more tha@'| — 1 features. LDA has been used in [12] as a text clas-
sification method and in [14] as a feature selection method.

3.2 Logistic Regression

Logistic regression is a statistical technique for modgéirbinary response variable by
a linear combination of one or more features, using a logit function

P(class =1lw,x) = ¢ (w'x),
where,
T
P(wTx) = exp(w" x) 1

1+ exp(wTx) T ltexp Wx

The Bayesian approach to the logistic regression assunussiga priorsp(class =
0|z) ~ N(uo, o3 (andp(class = 1|z) ~ N(u1,0?). In order to find the Maximum A
posterior Probability (MAP) estimate of:

L(w) = arg max {P(w;|D)}

n 1
= P(w,
s oo [T s

i=1 (*WJ'TXiyi)

= argmax {ln P(w;) — Zln(l + exp(wfxiyi))}
’ i

whereP(w) is the prior onw andn is the number of the training examples.



3.3 Support Vector Machines

Support Vector Machines (SVMs) learns the parameteandb specifying a linear
decision ruleh(z) = sign(w - x + b), so that the smallest distance between each
training example and the decision boundary (i.e., margimaximized [15]. It works

by solving the following optimization problem:

miny e gw W+ O, &
subject to Vi, ; (WTQS(:L',‘) + b) >1-&, &>0

Here training vectory;, is mapped into a higher dimensional space by the funetion
Then SVM finds a linear separating hyperplane with the malkinaagin in this higher
dimensional space’ > 0 is the penalty parameter of the error term. The constraints
require that all examples in the training set are classif@dectly up to some slack
variable¢;. If a training example lies on the wrong side of the decisionrary, the
corresponding; is greater than 1. Therefork, ., &; is an upper bound on the number
of training errors. The facta?' is a parameter that allows one to trade off training error
and model complexity.

3.4 Naive Bayes Classifier

A Bayesian learning framework assumes that the examples gearerated by a para-
metric model and uses training data to compute Bayes-opéstianates of the model
parameters. With these estimates, it classifies new testra using Bayes'’ rule to
calculate the posterior probability that a class would hgeeerated the test example
in question. Then classification is carried out by selectirgmost probable class. In
addition to this framework, the naive Bayes classificatissumes that all attributes of
the examples are independent of each other given the canftte class.

The naive Bayes classifier we used is a multinomial modelréyatesents an ex-
ample as the set of attribute occurrences from the traireglsis assumed that the
individual attribute occurrences to be the “events” andetkemple to be the collection
of attribute events. It is known to perform better than a muatiate Bernouli model,
where an example is regarded as “event” that is consistdteattisence or presence of
attributes, because of capturing the frequency of thebatet [9].

Naive Bayes classifier predicts the clagshat maximizes the posterior probability,
P(c;|x), for an example vectat, under the attribute independence assumption.

Plexi) = al"gmjax{P(Cj)P(Xi\Cj)/P(X)}
= argmjaX{P(cj)P(xi\cj)}

| Al
= argmax{ P(cj) H P(ak|c;)™*
J k=1
|A]

= argmax log P(c;) + Z]og P(ag|c;)m
J
k=1



||

= argmax log P(c; +anklogP(ak|cj)
k=1

where| 4] is the total number of attributes, j is the frequency of théth attribute in

theith example P(c;) = 5, andP(axle;) = P —.
ke|A|

Although the assumption on the feature independence islistie in a real-world
problem, the naive Bayesian classification has been showe suirprisingly effective
and is computationally efficient [9]. In other words, traigisuch a classifier only
requires time that is linear in the number of features and oietances, meaning that
they do not use word combinations as predictors and are #rusdre efficient than
the exponential non-Bayes approaches.

4 Experiments

As we described earlier, the scenario which we are partigutgerested in is a process
of confidential access control based on the need-to-knawipte. The purpose of the
experiments is two-fold; to find a good classification metkiwat minimizes the cost
and the false positive rate while holding the false negatitereasonably low; to verify
that the wrappers for cost-sensitive learning reduce tted tmst loss in comparison
with error-minimizing classifiers. From these objectivdsgee performance metrics
are primarily used to measure the usefulness of classifigise negative defined as
fn = 2+ by using the values in the table 1, false positiyp,= ;7 d, and cost for
mlsclassmcatlon These metrics are better matched to oyoose than conventional
measures based on precision-recall because we are ietknegtrimarily reducing the
error and the cost. Moreover, two error measures are noitiserts changes of class
frequency whereas the precision and recall are sensitiveetisequencies of the target
classes [4].

Since there are no datasets available that are comprisedfiential information,
we choose the Reuters-21578 document collections for empets. This data set,
which consists of world news stories from 1987, has beconanatmark in text cate-
gorization evaluations. It has been partially labelled fyyezts with respect to a list of
categories. These categories have been grouped into categieries of people, topics,
places, organisations etc. The category distributionesvekl: the most common cate-
gory has atraining-set frequency of 2,877, but 82% of thegraies have less than 100
instances and 33% of the categories have less than 10 iestaFitere are 135 overlap-
ping topic categories. Since it is a binary classificati@k tahere each document has
an exclusive category (i.e., either positive or negatiwe,discarded documents that
are assigned no topic or multiple topics. Moreover, clagggsfrequencies less than
10 are discarded. The resulting data set is comprised of1%88uments as a training
set and 4,274 documents as a test set with 67 classes (topics)

Each document is represented by a multi-dimensional vedtatich size is de-
termined by the size of the vocabulary and its element cpomds to a word in the
vocabulary. The vocabulary was constructed by discardiog words, too frequent



words, and rarely occurring wordswvithout stemming. After these processes, the size
of the original vocabulary (i.e., a set of unique unigramasweduced to 7,114 from
23,918. In order to reduce the dimensionality further, vetetg three different feature
selection methods such g8 statistics, information gain, and point-wise mutual infor
mation. We found the performance pf method best. This replicates results reported
in other research works [18], [17]. The dimension of thedeatpace is finally set to
1,000. Previous work on the Reuters-21578 dataset showégubh a drastic reduc-
tion of the feature space’s dimension does not degrade tifierpence [5], [9]. Each
document is then represented by using those selected 1,0@3 w&nd their weights
are computed by:

Lk x (1 N o 0)
Wi kg = O —_ .
T\ ok 05+ 15 x e 52,

wheret f; i, is the frequency of théth word in theith documentgl; is theith document
length,ave dl is the average document length in the training documeis, the total
number of training documentdf;, is the document frequency of thieh word. The
final size of the word-by-document matrixii800 x 9854, which is reasonably smaller
than the original matrix7114 x 9854. For succinct representation of this matrix, we
tested two different techniques for dimension reductioimgipal component analysis
(PCA) and LDA/PCA. Since there is a noticeable performariiferénce between two
techniques in representing 90% of the total varidticéhe covariance matrix, we used
PCA alone for concise representation of the word-by-dogumetrix.

The experimental setting is as follows. All the documenesragarded as confi-
dential and accordingly they are kept in a secured contaémsuring that authorized
users are only allowed to access. Documents belonging tedleeted category are
regarded as confidential information that the requestalsieeknow. Conversely the
rest of test documents are confidential information thatikhoot be revealed. A false
positive occurs when the system accepts a request thatdshawe not been accepted
whereas a false negative occurs when the system rejectaestéhat should have been
accepted. From the security perspective, it is more toler@bhave an authorization
process with a high false negative rate than one with a high fzositive rate.

4.1 Cost Assignment

According to the class assignment — not the original catetgdrel, but the artificially
assigned class label, such as need-to-know confidentigherwise (simply, positive
or negative) — each of the documents in both the training @stihg sets is assigned by
a cost, ensuring that the mis-classification cost of a neddxbw confidential informa-
tion is higher than that of remaining confidential (i.8,p > Ao1, A10 > Ao, Ao1 >
A11) [3]. Otherwise unreasonable assignment of cost leadssifiéx to always predict

3This is done by removing words if their document frequendgss than a threshold of “rarely occurred”
(e.g., 3) or is greater than the threshold (e.g., 500) of ftequent.”

‘D = &I'D, where,D = kxn,D = m x n,k < m, k = Qi > 90% of variance in

Zj Aj

¥, T = @\
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the dominant class, regardless of what the true class isarticplar, let us assume that
the cost of first row in the table 1 is greater than that of thesd one (i.e.A1; > Ag;).

A classifier then always predicts “class=0" regardlesssdgiarned rules (e.g., posterior
probability distribution).

Since the Reuters-21578 document collection does not hastdrdormation, we
devised a heuristic for cost assignment. It complies withidea; firstly, there is a
cost involved in incorrect classification; secondly, thghar cost is assigned to a false
positive than a false negative. Particularly, the cost factassifying a documend;,
is computed by:

[s,5+|c]] if d; € ¢; and ¢; = positive
@)= [y, S

’ Inumber of negative documents| Otherwise

wheres = In %) x 100, N is the total number of documents ajagl| is the number
of documents belonging to thiéh category. The total cost for misclassification is added
to the cost of confidential documents misclassed if a classifinot able to predict any
of the positive cases, in order to prevent the case that a &svis simply achieved
by ignoring the class with a low frequency. For example, ¢heme 10 out of 10,000
documents belonging to the positive class. The cost assighensures that the total
cost for misclassifying those 10 examples should be eithealto or higher than that
of the remaining documen®s This heuristic method is intended to prevent the case
that a low cost can be achieved simply by ignoring the migariass. In particular,
there are 10 examples out of 10,000 examples belonging faigve class. The cost
assignment ensures that the total cost for misclassifyingeg 10 examples should be
either equals to or higher than that of remaining documiéen this is the case, a
low error rate can be achieved simply by ignoring the contidénlass. In particular,
a dumb classifier will achieve 99% accuracy by simply prédictll documents as
negative and it will pay a half of the total cost for its inaeet classification. Obviously
this should be avoided. To this end, the total cost for mésifecation is added by
the cost of confidential documents misclassified if a clagsifi not able to predict
any positive cases. The previous dumb classifier will be Eayli3815.6 because it
classifies all positive examples incorrectly, even thougtoes all negative examples
correctly. The total cost is computed by summing the misifiaation cost of positive
and negative examples. The cost for misclassifying p@sitiase will impose to a
classifier if it is only able to classify all non-confidentérrectly. It is reasonable that
a classifier, which predicts the label of all positive docuatsencorrectly and does all
negative correctly, will be eventually paying the same amiati cost paid by another
classifier that classifies all documents incorrectly.

This assignment method works for both cost assigned for eaample and cost
assigned for each case (e.g., false alarm and miss). Foettexpmple cost-sensitive

SFor this case, the cost for misclassifying a positive doaurie690.67 fn (2952 ) x 100 = 690.6755)
and the sum of the cost is 6906.755 (690.6%50). Accordingly the cost of misclassification of a negative
document is 0.6913%05-T55 = (.6913) and the cost sums to 6906.087.

SFor this case, the cost for misclassifying a positive doauirise690.78 and the sum of the cost is 6907.8
(690 x 10). Accordingly the cost of misclassification of a negatteeument is 0.6914 and the cost sums to

6907.8.
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Figure 2: A pair of of false positive (filled bar) and false atge (empty bar) for
“livestock” category is presented.

learning, the misclassification cost should be paid whensitipe is classified as a
negative. For the previous example, the cost for false a{agn A in the table 1) is
690.67 whereas the cost for miss (iJ&;) is 0.6913, respectively.

4.2 Experimental Results

We choose the five different categories as representatfegaaes according to their
category frequencies: small (livestock and corn), medimtexest), and large (acq and
earn). There are 70 % of documents in a category used asifigaisnd the remaining

30 % documents are used for “testing”, respectively. Thegeme different classifiers
tested: LDA, LR, and SVMs, and the combination of those tiulassifiers with two
wrappers for cost-sensitive learning: metacost (MC) arsiieg’. A binary classifier
was trained for each of the selected categories by consgithe category as positive
with the rest of the data as negative examples. We made us$e dflBSVM® and
tested three different kernels, such as linear, polyngraiad Gaussian. The Gaussian
kernel (idth = — featuri Tmension) Was chosen due to its best performance and the
different cost factors are assign%tdj’ = 10 ~ 100. Those values are chosen optimally
by 10-fold cross validation.

The experimental results are primarily analyzed by “falssitive,” “false nega-
tive,” and “cost.” The procedure of experiments is as foBowirstly, pick one of five
selected categories; secondly, assign the cost to eaclaofpes according to its im-
portance using the heuristic described in section 4.1, tingim each of nine classifiers
by training examples with cost; finally compute three perfance measure by using
the contingency table.

Figure thru 2 to 6 show pairs of false positive and false riegdbr each of the

"The results of naive Bayes classifiers were removed due podsperformance.

8http://www.csie.ntu.edu.twécjlin/libsvm/

9The cost of constrain violation is set to 100 if there aretiedly small amount of positive examples
available. Otherwise it is set to about 10.
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Methods livestock (114)| corn (253) | interest (513)] acq (2448) earn (3987)
SVM 13967 66453 54065 83141 108108

SVM (w/ costing) 4035+ 30 8851+ 52 | 9058+ 159 | 40009+ 252 | 96007+ 331

SVM (w/ mc) 7147+ 50 23596+ 64 | 32011+ 321 | 194165+ 451 | 228612+ 453
LR 35809 32759 60031 349080 710631

LR (w/ costing) 484+ 11 1333+ 44 | 29614+ 110 606+ 145 2521+ 191

LR (w/ mc) 34980+ 35 | 32759+ 79 | 60374+ 154 | 386859+ 1185 | 788819+ 263
LDA 2638 66453 124733 591300 908690

LDA (w/ costing) 1461+ 28 6092+ 89 | 7301+ 152 | 39354+ 205 | 41478+ 159

LDA (w/ mc) 40079+ 57 | 45778+ 71| 8955+ 157 | 51789+ 285 | 54084+ 244
Cost for base line 42625 79084 139113 591357 1090498

Table 2: The cost by nine different classifiers are presenié@ values in bold face
are the best for corresponding category.

selected categories by nine different classifiers, whiehrarmbered from the left to
right: SVM (1), SVM with costing (2), SVM with metacost (3),R.(4), LR with
costing (5), LR with metacost (6), LDA (7), LDA with costin@), and LDA with
metacost (9), respectively.

Except the “interest” category, LR with costing showed tlestlresults that mini-
mize false positive while holding false negative low. Intparar, for the “livestock”
category, LR trained by only 18% training data (i.e., 1781 afi9854 documents) re-
sulted 0% false positive and 2.8% false negative rate. Focdsting, we carried out
five different sampling trials for each category (i.e., 15310, and 15) and represented
the trial for the best performance. For this category, a pge&herated distribution by
10 rejection sampling trials is used to achieve this restdich resampled set has only
about 178 documents. LDA with costing showed the smallest éor the “interest”
category that is comprised of 5.6% false positive and 4.9%¢ faegative.

Table 2 replicates this trend in terms of the total cost fosdfaissification. The
number in parenthesis next to topic name is the total numtiekbdocuments belong-
ing to that category. The results reported for costing anthowst are the average of 5
differentruns. The bottom line entitled “cost for base lirsgthe cost for a category if a
classifier classifies all the testing examples incorreetly.( a classifier for “livestock”
category will cause 42625 for misclassification cost if &sdifies all incorrectly). For
the “earn” category, LR with costing caused only 0.002 ouheftotal cost (2521 out
of 1090498). For the remaining categories, the best-pagopaid only less than 0.05
out of the total cost.

From the comparison with error-minimizing classifiers, twsting proved its ef-
fectiveness in that it requires relatively small amountaiiing data for a better perfor-
mance. For the “corn” category, LR with costing, which onged 10% of the training
data (i.e., 986 out of 9854 documents) showed the best riesigitms of the smallest
loss (1333 out of 79084), zero false positive, and loweefaksgative rate (0.039). The
LR classifier was trained by a sample set by three rejectiompBag trials that is com-
prised of 458 positive and 528 negative examples. The sstddlss implies that it is
expected to pay 1.1% of the total loss caused by incorredtdamntial access control
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(i.e., misclassification). From the false positive perspedqzero false alarm), you do
not worry at all about the leaking of confidential informatic89% false negative rate
means that there would be 39 out of 1000 valid requests tadthiédential information
that are mistakenly rejected. This inconveniences emplopecause they have to ac-
cess particular information for their projects, but thetesgsdoes not authorize. This
trend holds good for the remaining four categories.

The primary reason that makes costing effective is its gttt generate a sample
that is comprised of nearly even number of positive and megakamples. For ex-
ample, each resampled set for the “interest” category hgsarout 500 documents
(actually ranging from 502 to 555). Ranging about 55% to 60%e documents in
each set are positive, even though on the original datasetstonly 3.6% (513 out
of 14,128). Moreover it takes relatively less time to trdie tlassifier with costing
because sample set is far smaller than the original traiekagnple. However this
property hindered the performance of SVM because its padace is sensitive to a
skewed class distribution, even with regularization (essigning a higher cost factor,
C = 100). In other words, it is difficult for a SVM to find the optimal pgrplane sepa-
rating two classes if the size of one class is relatively tan#ian the others. The result
in table 2 confirmed this hypothesis in that the more traimixgmples are available for
SVM without wrappers, the less cost it is paid (e.g., from 3ABR67 out of 42625)
for “livestock” category to 10% (108108 out of 1090498) featn” category).

Another reason, we believe, that the cost resulted in goddnmeance is that our
method for assigning cost distinguished well positive froegative examples. By
assigning at least more than 100 times cost to positive ebemnip helps the costing
choose the more important examples as sample.

The metacost did not show a good performance because thght Ioei overfitting
caused by a random resampling with replacement. To avoldmuerfitting, one might
think a resampling without replacement where an instances drawn from a distri-
bution and the next sample is drawn from the Set z. However this approach also
fails because it keeps the size of the original distributioraller and eventually there
is nothing left to be chosen.

5 Related Work

As many data mining techniques have been applied to var&alsyorld application
domains, the usefulness of the cost-sensitive learning dteention from the public.

Lee and his colleagues [7] introduced a cost-sensitivedreonk for the intrusion
detection domain and analyzed cost factors in detail. &datily, they identify the
major cost factors (e.g., costs for development, operaiamages and responding to
intrusion) and then applied a rule induction learning téghe (i.e., RIPPER) to this
cost model, in order to maximize security while minimizirgsts. However their cost
model should be changed manually if a system’s cost factersteanged.

Maloof [8] utilized two sampling methods, such as under- andr-sampling for
efficient learning of skewed data set. The under/over samglie stratification tech-
niques that generate a set of samples from the original datarding to a certain
criteria [2]. In the under-sampling, all instances of theess} with highestP’(;) are re-
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tained, and a fractiof”’ (i) / P’ (j) of the examples of each other class chosen at ran-
dom for inclusion in the resampled training set, whetgj) = C(j)P(j)/ >_; C(4)P(j)
andC(j) = >, C(i]7). C(j) is the cost of misclassifying an instance of classre-
spective of the class predicted. In the over-sampling, erctintrary, all examples of
the classj with lowest P’(j) are retained, and then the examples of every other class
i are duplicated approximately’(i)/P’(j) times in the training set. Both sampling
methods have drawbacks; the under-sampling reduces therarobdata available,
which might cause the increase of cost whereas the overisengvoids the loss of
training data but may significantly increase learning tirktareover these techniques
are only applicable when there is a slight difference in tles< frequency. In our
case, these two techniques resulted in the following distion of five selected topics;
under-sampling livestock (114— 0.35), corn (253— 3.23), interest (513~ 5.46),
acq (2448— 1278.68), earn (3987 3987) andover-sampling livestock (114—
9844.61), corn (253~ 89809), interest (513~ 617137), acq (2448~ 35452826),
earn (3987— 110543424). Since there are too few examples availabledmning by
under-sampling whereas there are too many examples to datigmally process by
over-sampling, we did not apply those two methods to ouraden

Fan and his colleagues [16] proposed a new method calledCAst for reduc-
ing misclassification cost using boosting. In particulae tdea is to take an unequal
care for examples according to their cost while learning ruby assigning high initial
weights to costly weights and by updating rule in taking éosi account. Their ap-
proach is similar to the costing in that the performance igrowed by averaging (i.e.,
weighted bagging vs bagging). The finding in comparison ci@ast with AdaBoost
by “Chase credit card data " is quite similar to ours — AdaBeoeduces misclassifica-
tion error significantly but does not reduce cost for missifgiing.

6 Conclusion and Future Work

In this paper we test the effectiveness of cost-sensitamnlag for confidential access
control. The goal of this work is to develop a reliable pracks confidential access
control based on the need-to-know principle; the requesadoess to a unit of confi-
dential information is accepted only if the content of theuested item is relevant to
the requester’s task. We model such a dichotomous decis@antf reject or accept
the request) in a machine learning framework. A false pes@ccurs when the system
accepts a request that should not have been accepted whefdas negative occurs
when the system rejects a request that should have beertedcEpr both errors, the
system pays the cost for misclassification. From the sgopeitspective, the cost for a
false positive is more expensive than that of false negatioause the former is a seri-
ous security problem because confidential informationgctvishould not be revealed,
can be accessed.

In order to achieve our goal we need to find a classifier thaimimes the cost
and false positive rate while holding false negative ratsoaable row. We utilized
two wrappers for cost-sensitive learning because thegrrrming error-minimizing
classifiers do not concern unequal cost for misclassifinatitom the comparison of
the cost-sensitive learners with the error-minimizingsléers, we found that costing
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showed the best performance. In particular, it requireefss training data for much
better results, in terms of the smallest cost paid, the lofeése positive rate, and the
lower false negative rate. The benefit of smaller training ds two-fold; First, obvi-
ously it takes less time to train the classifier; Second,dibdes a human administrator
to conveniently identify arbitrary subsets of confidenitdibrmation, in order to train
the initial classifier.

Since we found our metric for cost assignment useful, agéuitork, we would
like to generalize this idea. In this work, we primarily fead on testing this frame-
work for the text domain. We would like to investigate thefusgess of this approach
in different type of media, such as image, video, etc. Algtoto our knowledge, the
machine learning approach is a novel one for access coittbuld be very inter-
esting if we compare the effectiveness of our framework withventional document
management systems (e.g., ACL-based systems).
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Figure 3: A pair of of false positive (filled bar) and false atge (empty bar) for
“corn” category is presented.
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Figure 4: A pair of of false positive (filled bar) and false atge (empty bar) for
“interest” category is presented.
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Figure 6: A pair of of false positive (filled bar) and false atge (empty bar) for “earn”
category is presented.
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